

## 24<sup>th</sup> Feb. 2021 | Shift - 1 MATHEMATICS

# **JEE | NEET | Foundation**





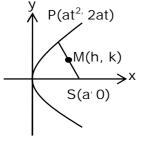
**1.** The locus of the mid-point of the line segment joining the focus of the parabola  $y^2=4ax$  to a moving point of the parabola, is another parabola whose directrix is:.

(1) 
$$x = a$$
 (2)  $x = 0$  (3)  $x = -\frac{a}{2}$  (4)  $x = \frac{a}{2}$ 

#### Ans. (2)

Sol. 
$$h = \frac{at^2 + a}{2}$$
,  $k = \frac{2at + 0}{2}$   
 $\Rightarrow t^2 = \frac{2h - a}{a}$  and  $t = \frac{k}{a}$   
 $\Rightarrow \frac{k^2}{a^2} = \frac{2h - a}{a}$   
 $\Rightarrow$  Locus of (h, k) is  $y^2 = a (2x - a)$   
 $\Rightarrow y^2 = 2a\left(x - \frac{a}{2}\right)$ 

Its directrix is  $x - \frac{a}{2} = -\frac{a}{2} \Rightarrow x = 0$ 



2. A scientific committee is to formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is:

(1) 560 (2) 1050 (3) 1625 (4) 575

#### Ans. (3)

- Sol. (21, 4F) + (31, 6F) + (41, 8F)=  ${}^{6}C_{2}{}^{8}C_{4} + {}^{6}C_{3}{}^{8}C_{6} + {}^{6}C_{4}{}^{8}C_{8}$ 
  - = 15 × 70 + 20 × 28 + 15 × 1
  - = 1050 + 560 + 15 = 1625

### Toll Free : 1800-212-1799

www.motion.ac.in | Email : info@motion.ac.in

24<sup>th</sup> Feb. 2021 | Shift 1

3. The equation of the plane passing through the point (1, 2, -3) and perpendicular to the planes 3x + y - 2z = 5 and 2x - 5y - z = 7, is: (1) 3x - 10y - 2z + 11 = 0(2) 6x - 5y - 2z - 2 = 0(3) 11x + y + 17z + 38 = 0(4) 6x - 5y + 2z + 10 = 0Ans. (3) Sol. Normal vector of required plane is  $\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & -2 \\ 2 & -5 & -1 \end{vmatrix} = -11\hat{i} - \hat{j} - 17\hat{k}$ 

MOTION

 $\therefore 11 (x - 1) + (y - 2) + 17 (z + 3) = 0$ 11x + y + 17z + 38 = 0

A man is walking on a straight line. The arithmetic mean of the reciprocals of the intercepts of this line on the coordinate axes is <sup>1</sup>/<sub>4</sub>. Three stones A, B and C are placed at the points (1, 1), (2, 2) and (4, 4) respectively. Then which of these stones is/are on the path of the man?
(1) B only
(2) A only
(3) All the three
(4) C only

Ans. (1)

Sol.  $\frac{x}{a} + \frac{y}{b} = 1$   $\frac{h}{a} + \frac{k}{b} = 1$  .....(1)  $\frac{1}{a} + \frac{1}{b} = \frac{1}{4}$   $\therefore \frac{1}{a} + \frac{1}{b} = \frac{1}{2}$  .....(ii)  $\therefore$  Line passes through fixed point B(2, 2) (from (1) and (2))

### Toll Free : 1800-212-1799

24<sup>th</sup> Feb. 2021 | Shift 1

**5.** The statement among the following that is a tautology is:

(1) 
$$A \land (A \lor B)$$
 (2)  $B \rightarrow [A \land (A \rightarrow B)]$  (3)  $A \lor (A \land B)$  (4)  $[A \land (A \rightarrow B)] \rightarrow B$ 

#### Ans. (4)

Sol.  $A \land (\sim A \lor B) \rightarrow B$ =  $[(A \land \sim A) \lor (A \land B)] \rightarrow B$ =  $(A \land B) \rightarrow B$ =  $\sim A \lor \sim B \lor B$ = t

6. Let  $f: \mathbb{R} \to \mathbb{R}$  be defined as f(x) = 2x-1 and  $g:\mathbb{R} - \{1\} \to \mathbb{R}$  be defined as  $g(x) = \frac{x-\frac{1}{2}}{x-1}$ 

Then the composition function f(g(x)) is :

(1) both one-one and onto

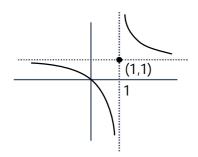
- (3) neither one-one nor onto
- (2) onto but not one-one(4) one-one but not onto

Ans. (4)

Sol. f(g(x)) = 2g(x) - 1

$$= 2 \frac{\left(x - \frac{1}{2}\right)}{x - 1} = \frac{x}{x - 1}$$
$$f(g(x)) = 1 + \frac{1}{x - 1}$$

one-one, into



### Toll Free : 1800-212-1799



7. If  $f: \mathbb{R} \to \mathbb{R}$  is a function defined by  $f(x) = [x-1] \cos\left(\frac{2x-1}{2}\right)\pi$ , where [.] denotes the greatest

integer function, then f is :

- (1) discontinuous only at x = 1
- (2) discontinuous at all integral values of x except at x = 1
- (3) continuous only at x = 1
- (4) continuous for every real x

#### Ans. (4)

Sol. Doubtful points are 
$$x = n, n \in I$$

L.H.L = 
$$\lim_{x \to n^{-}} [x-1] \cos\left(\frac{2x-1}{2}\right) \pi = (n-2) \cos\left(\frac{2n-1}{2}\right) \pi = 0$$
  
R.H.L =  $\lim_{x \to n^{+}} [x-1] \cos\left(\frac{2x-1}{2}\right) \pi = (n-1) \cos\left(\frac{2n-1}{2}\right) \pi = 0$   
f(n) = 0

Hence continuous.

8. The function 
$$f(x) = \frac{4x^3 - 3x^2}{6} - 2\sin x + (2x - 1)\cos x$$
:  
(1) increases in  $\left[\frac{1}{2}, \infty\right)$  (2) decreases  $\left(-\infty, \frac{1}{2}\right]$   
(3) increases in  $\left(-\infty, \frac{1}{2}\right]$  (4) decreases  $\left[\frac{1}{2}, \infty\right)$ 

#### Ans. (1)

Sol. 
$$f'(x) = (2x - 1) (x - \sin x)$$
  
 $\Rightarrow f'(x) \ge 0 \text{ in } x \in \left[\frac{1}{2}, \infty\right)$   
and  $f'(x) \le 0 \text{ in } x \in \left(-\infty, \frac{1}{2}\right]$ 

9. The distance of the point (1, 1, 9) from the point of intersection of the line  $\frac{x-3}{1} = \frac{y-4}{2} = \frac{z-5}{2}$ and the plane x + y + z = 17 is: (1)  $\sqrt{38}$  (2)  $19\sqrt{2}$  (3)  $2\sqrt{19}$  (4) 38

### Toll Free : 1800-212-1799

#### Ans. (1)

Sol. 
$$\frac{x-3}{1} = \frac{y-4}{2} = \frac{z-5}{2} = \lambda$$
  

$$\Rightarrow x = \lambda + 3, y = 2\lambda + 4, z = 2\lambda + 5$$
  
Which lines on given plane hence  

$$\Rightarrow \lambda + 3 + 2\lambda + 4 + 2\lambda + 5 = 17$$
  

$$\Rightarrow \lambda = \frac{5}{5} = 1$$
  
Hence, point of intersection is Q (4, 6, 7)  

$$\therefore \text{ Required distance} = PQ$$
  

$$= \sqrt{9 + 25 + 4}$$
  

$$= \sqrt{38}$$
  
**10.** 
$$\lim_{x \to 0} \frac{\int_{0}^{2} (\sin \sqrt{t}) dt}{x^{3}} \text{ is equal to :}$$
  

$$(1) \frac{2}{3} \qquad (2) 0 \qquad (3) \frac{1}{15} \qquad (4) \frac{3}{2}$$

Ans. (1)

Sol.  $\lim_{x \to 0} \frac{\int_{0}^{x^{2}} \sin \sqrt{t} dt}{x^{3}} = \lim_{x \to 0} \frac{(\sin |x|) 2x}{3x^{2}} = \lim_{x \to 0} \left(\frac{\sin x}{x}\right) \times \frac{2}{3} = \frac{2}{3}$ 

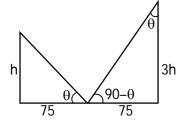
- **11.** Two vertical poles are 150 m apart and the height of one is three times that of the other. If from the middle point of the line joining their feet, an observer finds the angles of elevation of their tops to be complementary, then the height of the shorter pole (in meters) is: (1) 25 (2)  $20\sqrt{3}$  (3) 30 (4)  $25\sqrt{3}$
- Ans. (4)

Sol. 
$$\tan \theta = \frac{h}{75} = \frac{75}{3h}$$
  
 $\Rightarrow h^2 = \frac{(75)^2}{3}$ 

 $h = 25\sqrt{3}m$ 

#### Toll Free : 1800-212-1799





**12.** If the tangent to the curve  $y = x^3$  at the point P(t, t<sup>3</sup>) meets the curve again at Q, then the ordinate of the point which divides PQ internally in the ratio 1 : 2 is :

(1)  $-2t^3$  (2)  $-t^3$  (3) 0 (4)  $2t^3$ 

- Ans. (1)
- Sol. Equation of tangent at P(t, t<sup>3</sup>)

 $\Rightarrow x = -2t \Rightarrow Q(-2t, -8t^3)$ 

 $(y - t^3) = 3t^2(x - t)$  ......(1) Now solve the above equation with  $y = x^3$  ......(2) By (1) & (2)  $x^3 - t^3 = 3t^2 (x - t)$  $x^2 + xt + t^2 = 3t^2$  $x^2 + xt - 2t^2 = 0$ (x - t)(x + 2t) = 0

Ordinate of required point =  $\frac{2t^3 + (-8t^3)}{3} = -2t^3$ 

- **13.** The area (in sq. units) of the part of the circle  $x^2+y^2=36$ , which is outside the parabola  $y^2=9x$ , is :
  - $(1)24\pi + 3\sqrt{3}$
  - (2)  $12\pi + 3\sqrt{3}$
  - (3)  $12\pi 3\sqrt{3}$
  - (4)  $24\pi 3\sqrt{3}$

#### Toll Free : 1800-212-1799

#### Ans. (4)

Sol. The curves intersect at point  $(3, \pm 3 \sqrt{3})$ 

Required area

$$= \pi r^{2} - 2 \left[ \int_{0}^{3} \sqrt{9x} dx + \int_{3}^{6} \sqrt{36 - x^{2}} dx \right]$$

$$= 36\pi - 12\sqrt{3} - 2 \left( \frac{x}{2}\sqrt{36 - x^{2}} + 18\sin^{-1}\left(\frac{x}{6}\right) \right)_{3}^{6}$$

$$= 36\pi - 12\sqrt{3} - 2 \left( 9 - \left(\frac{9\sqrt{3}}{2} + 3\pi\right) \right) = 24\pi - 3\sqrt{3}$$

$$y$$

$$y$$

$$y^{2} = 9x$$

$$y$$

$$y^{2} = 9x$$

$$y$$

$$y^{2} = 9x$$

**14.** If  $\int \frac{\cos x - \sin x}{\sqrt{8 - \sin 2x}} dx = a \sin^{-1} \left( \frac{\sin x + \cos x}{b} \right) + c$ , where c is a constant of integration, then the ordered pair (a, b) is equal to :

(1) (1, -3) (2) (1, 3) (3) (-1, 3) (4) (3, 1)

- Ans. (2)
- Sol. put sin x + cos x = t  $\Rightarrow$ 1 + sin 2x = t<sup>2</sup>

$$\Rightarrow$$
 (cos x – sin x) dx = dt

$$\therefore I = \int \frac{dt}{\sqrt{8 - (t^2 - 1)}} = \int \frac{dt}{\sqrt{9 - t^2}} = \sin^{-1}\left(\frac{t}{3}\right) + C = \sin^{-1}\left(\frac{\sin x + \cos x}{3}\right) + C$$
$$\Rightarrow a = 1 \text{ and } b = 3$$

### Toll Free : 1800-212-1799

**15.** The population P = P(t) at time 't' of a certain species follows the differential equation  $\frac{dP}{dt} = 0.5P - 450$ . If P(0) = 850, then the time at which population becomes zero is :

MOTION

(1)  $\frac{1}{2}\log_{e} 18$  (2)  $2\log_{e} 18$  (3)  $\log_{e} 9$  (4)  $\log_{e} 18$ 

- Sol.  $\frac{dp}{dt} = \frac{p 900}{2}$  $\int_{850}^{0} \frac{dp}{p 900} = \int_{0}^{t} \frac{dt}{2}$  $\ell n \left| P 900 \right|_{850}^{0} = \frac{t}{2}$  $\ell n \left| 900 \right| \ell n \left| 50 \right| = \frac{t}{2}$  $\frac{t}{2} = \ell n \left| 18 \right|$  $\Rightarrow t = 2\ell n 18$
- **16.** The value of  $-{}^{15}C_1 + 2.{}^{15}C_2 - 3.{}^{15}C_3 + \dots - 15.{}^{15}C_{15} + {}^{14}C_1 + {}^{14}C_3 + {}^{14}C_5 + \dots + {}^{14}C_{11}$  is: (1)  $2{}^{14}$  (2)  $2{}^{13} - 13$  (3)  $2{}^{16} - 1$  (4)  $2{}^{13} - 14$
- Ans. (4)

Sol. 
$$S_1 = -{}^{15}C_1 + 2 \cdot {}^{15}C_2 - \dots - 15 \cdot {}^{15}C_{15}$$
  
 $= \sum_{r=1}^{15} (-1)^r \cdot r \cdot {}^{15}C_r = 15 \sum_{r=1}^{15} (-1)^r \cdot {}^{14}C_{r-1}$   
 $= 15 \cdot (-{}^{14}C_0 + {}^{14}C_1 - \dots - {}^{14}C_{14}) = 15 \cdot (0) = 0$   
 $S_2 = {}^{14}C_1 + {}^{14}C_3 + \dots + {}^{14}C_{11}$   
 $= ({}^{14}C_1 + {}^{14}C_3 + \dots + {}^{14}C_{11} + {}^{14}C_{13}) - {}^{14}C_{13}$   
 $= 2{}^{13} - 14$   
 $= S_1 + S_2 = 2{}^{13} - 14$ 

### Toll Free : 1800-212-1799

17. An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is :

(1) 
$$\frac{3}{16}$$
 (2)  $\frac{1}{2}$  (3)  $\frac{5}{16}$  (4)  $\frac{1}{32}$ 

#### Ans. (2)

Sol. P(odd no. twice) = P(even no. thrice)

$$\Rightarrow^{n} C_{2} \left(\frac{1}{2}\right)^{n} =^{n} C_{3} \left(\frac{1}{2}\right)^{n} \Rightarrow n = 5$$

Success is getting an odd number then P(odd successes) = P(1) + P(3) + P(5)

$$= {}^{5}C_{1}\left(\frac{1}{2}\right)^{5} + {}^{5}C_{3}\left(\frac{1}{2}\right)^{5} + {}^{5}C_{5}\left(\frac{1}{2}\right)^{5}$$
$$= \frac{16}{2^{5}} = \frac{1}{2}$$

- **18.** Let p and q be two positive number such that p + q = 2 and  $p^4 + q^4 = 272$ . Then p and q are roots of the equation :
  - (1)  $x^2 2x + 2 = 0$ (2)  $x^2 - 2x + 8 = 0$ (3)  $x^2 - 2x + 136 = 0$ (4)  $x^2 - 2x + 16 = 0$

#### Ans. (4)

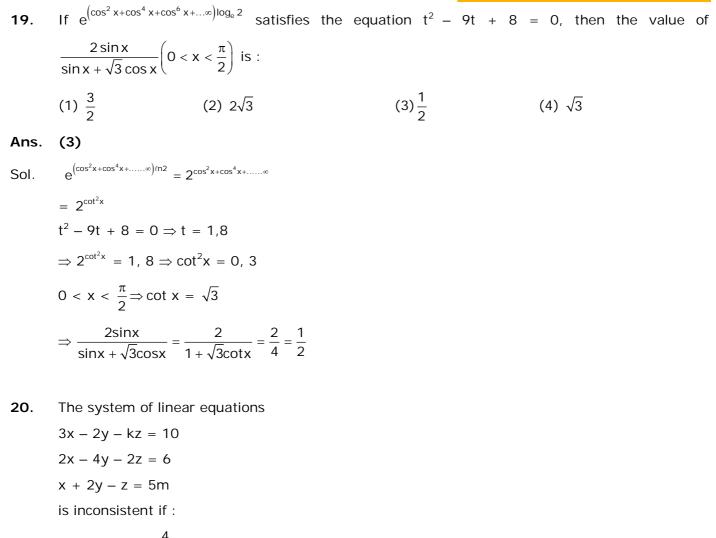
Sol. 
$$(p^2 + q^2)^2 - 2p^2q^2 = 272$$
  
 $((p + q)^2 - 2pq)^2 - 2p^2q^2 = 272$   
 $16 + 16pq + 2p^2 q^2 = 272$   
 $(pq)^2 - 8pq - 128 = 0$   
 $pq = \frac{8 \pm 24}{2} = 16, -8$   
 $pq = 16$   
Now  
 $x^2 - (p + q)x + pq = 0$   
 $x^2 - 2x + 16 = 0$ 

## Toll Free : 1800-212-1799

www.motion.ac.in | Email : info@motion.ac.in

#### 24<sup>th</sup> Feb. 2021 | Shift 1





(1) k = 3, m = 
$$\frac{4}{5}$$
  
(3) k ≠ 3, m ≠  $\frac{4}{5}$   
(2) k ≠ 3, m ∈ R  
(4) k = 3, m ≠  $\frac{4}{5}$ 

Ans. (4)

Sol.  $\Delta = \begin{vmatrix} 3 & -2 & -k \\ 1 & -4 & -2 \\ 1 & 2 & -1 \end{vmatrix} = 0$ 3(4 + 4) + 2(-2 + 2) - k(4 + 4) = 0 $\Rightarrow k = 3$  $\Delta_{x} = \begin{vmatrix} 10 & -2 & -3 \\ 6 & -4 & -2 \\ 5m & 2 & -1 \end{vmatrix} \neq 0$ 

#### Toll Free : 1800-212-1799

24<sup>th</sup> Feb. 2021 | Shift 1

$$10(4 + 4) + 2(-6 + 10m) - 3(12 + 20m) \neq 0$$
  

$$80 - 12 + 20m - 36 - 60m \neq 0$$
  

$$40m \neq 32 \Rightarrow m \neq \frac{4}{5}$$
  

$$\Delta_{y} = \begin{vmatrix} 3 & 10 & -3 \\ 2 & 6 & -2 \\ 1 & 5m & -1 \end{vmatrix} \neq 0$$
  

$$3(-6 + 10m) - 10(-2 + 2) - 3(10m - 6) \neq 0$$
  

$$-18 + 30m - 30m + 18 \neq 0 \Rightarrow 0$$
  

$$\Delta_{z} = \begin{vmatrix} 3 & -2 & 10 \\ 2 & -4 & 6 \\ 1 & 2 & 5m \end{vmatrix} \neq 0$$

 $3(-20m - 12) + 2(10m - 6) + 10(4 + 4) - 40m + 32 \neq 0 \Rightarrow m \neq \frac{4}{5}$ 

#### Section – B

**1.** Let  $P = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{bmatrix}$ , where  $\alpha \in R$ . Suppose  $Q = [q_{ij}]$  is a matrix satisfying  $PQ = kI_3$  for some

non-zero  $k \in \mathbb{R}$ . If  $q_{23} = -\frac{k}{8}$  and  $|Q| = \frac{k^2}{2}$ , then  $\alpha^2 + k^2$  is equal to \_\_\_\_\_

Ans. 17

Sol. As PQ = KI 
$$\Rightarrow$$
 Q = kP<sup>-1</sup>I  
now Q =  $\frac{k}{|P|} (adjP) I$   $\Rightarrow$  Q =  $\frac{k}{(20+12\alpha)} \begin{bmatrix} - & - & - \\ - & - & (-3\alpha-4) \\ - & - & - \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$   
 $\therefore$  q<sub>23</sub> =  $\frac{-k}{8}$   $\Rightarrow$   $\frac{k}{(20+12\alpha)} (-3\alpha-4) = \frac{-k}{8} \Rightarrow 2(3\alpha+4) = 5 + 3\alpha$   
 $3\alpha = -3$   $\Rightarrow$   $\alpha = -1$   
also  $|Q| = \frac{k^3 |I|}{|P|}$   $\Rightarrow$   $\frac{k^2}{2} = \frac{k^3}{(20+12\alpha)}$   
 $(20+12\alpha) = 2k \Rightarrow 8 = 2k \Rightarrow k = 4$ 

#### Toll Free : 1800-212-1799

2. Let  $B_i(i=1, 2, 3)$  be three independent events in a sample space. The probability that only  $B_1$  occur is  $\alpha$ , only  $B_2$  occurs is  $\beta$  and only  $B_3$  occurs is  $\gamma$ . Let p be the probability that none of the events  $B_i$  occurs and these 4 probabilities satisfy the equations  $(\alpha - 2\beta)p = \alpha\beta$  and  $(\beta - 3\gamma)p = 2\beta\gamma$  (All the probabilities are assumed to lie in the interval (0, 1)). Then  $\frac{P(B_1)}{P(B_3)}$  is equal to \_\_\_\_\_

ΜοτίοΝ

#### Ans. 6

Sol. Let x, y, z be probability of B<sub>1</sub>, B<sub>2</sub>, B<sub>3</sub> respectively  $\Rightarrow x(1 - y) (1 - z) = \alpha$ 

- $\Rightarrow y(1 x) (1 z) = \beta$   $\Rightarrow z(1 - x)(1 - y) = \gamma$   $\Rightarrow (1 - x)(1 - y)(1 - z) = p$   $(\alpha - 2\beta)p = \alpha\beta$  (x(1-y)(1-z)-2y(1-x)(1-z)) (1-x)(1-y)(1-z) = xy(1-x)(1-y)(1-z) x - xy - 2y + 2xy = xy  $x = 2y \qquad ...(1)$ Similarly ( $\beta$ -3r) p = 2 $\beta$ r  $\Rightarrow y = 3z \qquad ...(2)$ From (1) & (2) x = 6zNow  $\frac{x}{z} = 6$
- **3.** The minimum value of  $\alpha$  for which the equation  $\frac{4}{\sin x} + \frac{1}{1 \sin x} = \alpha$  has at least one solution in

$$\left(0,\frac{\pi}{2}\right)$$
 is \_\_\_\_\_

#### Ans. 9

Sol.  $f(x) = \frac{4}{\sin x} + \frac{1}{1 - \sin x}$ 

Let sinx = t  $\therefore x \in \left(0, \frac{\pi}{2}\right) \Rightarrow 0 < t < 1$ 

### Toll Free : 1800-212-1799

24<sup>th</sup> Feb. 2021 | Shift 1

$$f(t) = \frac{4}{t} + \frac{1}{1-t}$$

$$f'(t) = \frac{-4}{t^2} + \frac{1}{(1-t)^2}$$

$$= \frac{t^2 - 4(1-t)^2}{t^2(1-t)^2}$$

$$= \frac{(t-2(1-t))(t+2(1-t))}{t^2(1-t)^2}$$

$$= \frac{(3t-2)(2-t)}{t^2(1-t)^2}$$

$$f_{min} \text{ at } t = \frac{2}{3}$$

$$\alpha_{min} = f\left(\frac{2}{3}\right) = \frac{4}{\frac{2}{3}} + \frac{1}{1-\frac{2}{3}}$$

$$= 6 + 3$$

$$= 9$$

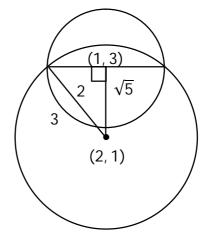
$$\frac{1}{2/3} + \frac{1}{2}$$

4. If one of the diameters of the circle  $x^2 + y^2 - 2x - 6y + 6 = 0$  is a chord of another circle 'C' whose center is at (2,1), then its radius is \_\_\_\_\_

Ans. 3

distance between (1, 3) and (2, 1) is  $\sqrt{5}$ 

$$\therefore \left(\sqrt{5}\right)^2 + \left(2\right)^2 = r^2$$
$$\Rightarrow r = 3$$



## Toll Free : 1800-212-1799



5. 
$$\lim_{x \to \infty} \tan \left\{ \sum_{r=1}^{n} \tan^{-1} \left( \frac{1}{1+r+r^2} \right) \right\}$$
 is equal to \_\_\_\_\_

Ans. 1

Sol.  
$$\tan\left(\lim_{n \to \infty} \sum_{r=1}^{n} \left[ \tan^{-1} \left( r+1 \right) - \tan^{-1} \left( r \right) \right] \right)$$
$$= \tan\left(\lim_{n \to \infty} \left( \tan^{-1} \left( n+1 \right) - \frac{\pi}{4} \right) \right)$$
$$= \tan\left(\frac{\pi}{4}\right) = 1$$

6. If  $\int_{-a}^{a} (|x| + |x-2|) dx = 22$ , (a > 2) and [x] denotes the greatest integer  $\leq x$ , then  $\int_{a}^{-a} (x + [x]) dx$  is equal to \_\_\_\_\_

Ans. 3

Sol. 
$$\int_{-a}^{0} (-2x+2) dx + \int_{0}^{2} (x+2-x) dx + \int_{2}^{a} (2x-2) dx = 22$$
$$x^{2} - 2x |_{0}^{-a} + 2x |_{0}^{2} + x^{2} - 2x |_{2}^{a} = 22$$
$$a^{2} + 2a + 4 + a^{2} - 2a - (4 - 4) = 22$$
$$2a^{2} = 18 \Rightarrow a = 3$$
$$\int_{3}^{-3} (x + [x]) dx = -\left(\int_{-3}^{3} (x + [x]) dx\right) = -\left(\int_{-3}^{3} [x] dx\right)$$
$$= -(-3 - 2 - 1 + 0 + 1 + 2) = 3$$

7. Let three vectors  $\vec{a}, \vec{b}$  and  $\vec{c}$  be such that  $\vec{c}$  is coplanar with  $\vec{a}$  and  $\vec{b}, \vec{a}.\vec{c} = 7$  and  $\vec{b}$  is perpendicular to  $\vec{c}$ , where  $\vec{a} = -\hat{i} + \hat{j} + \hat{k}$  and  $\vec{b} = 2\hat{i} + \hat{k}$ , then the value of  $2|\vec{a}+\vec{b}+\vec{c}|^2$  is \_\_\_\_\_\_

Ans. 75

Sol. 
$$\vec{c} = \lambda \left( \vec{b} \times \left( \vec{a} \times \vec{b} \right) \right)$$
  
=  $\lambda \left( \left( \vec{b} \cdot \vec{b} \right) \vec{b} - \left( \vec{b} \cdot \vec{a} \right) \vec{b} \right)$   
=  $\lambda \left( 5 \left( -\hat{i} + \hat{j} + \hat{k} \right) + 2\hat{i} + \hat{k} \right)$ 

### Toll Free : 1800-212-1799

$$= \lambda \left(-3\hat{i} + 5\hat{j} + 6\hat{k}\right)$$
  
$$\vec{c}.\vec{a} = 7 \Rightarrow 3\lambda + 5\lambda + 6\lambda = 7$$
  
$$\lambda = \frac{1}{2}$$
  
$$\therefore 2 \left| \left(\frac{-3}{2} - 1 + 2\right)\hat{i} + \left(\frac{5}{2} + 1\right)\hat{j} + (3 + 1 + 1)\hat{k} \right|^2$$
  
$$= 2\left(\frac{1}{4} + \frac{49}{4} + 25\right) = 25 + 50 = 75$$

8. Let 
$$A = \{n \in N : n \text{ is a 3-digit number}\}\$$
  
 $B = \{9k + 2 : k \in N\}$   
and  $C : \{9k + \ell : k \in N\}$  for some  $\ell$  (0 <  $\ell$  < 9)

If the sum of all the elements of the set A  $\cap$  (B  $\cup$  C) is 274×400, then  $\ell$  is equal to \_\_\_\_

#### Ans. 5

$$\Rightarrow \text{Sum equal to} \frac{100}{2} (1093) = s_1 = 54650$$

$$274 \times 400 = s_1 + s_2$$

$$274 \times 400 = \frac{100}{2} [101 + 992] + s_2$$

$$274 \times 400 = 50 \times 1093 + s_2$$

$$s_2 = 109600 - 54650$$

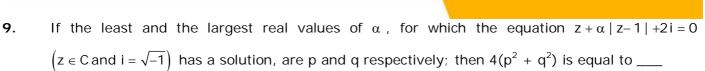
$$s_2 = 54950$$

$$s_2 = 54950 = \frac{100}{2} [(99 + \ell) + (990 + \ell)]$$

$$1099 = 2\ell + 1089$$

$$\ell = 5$$

### Toll Free : 1800-212-1799



**Motion**<sup>®</sup>

#### Ans. 10

Sol. 
$$x + iy + \alpha \sqrt{(x-1)^2 + y^2 + 2i} = 0$$
  
 $\therefore y + 2 = 0 \text{ and } x + \alpha \sqrt{(x-1)^2 + y^2} = 0$   
 $y = -2 \& x^2 = \alpha^2 (x^2 - 2x + 1 + 4)$   
 $\alpha^2 = \frac{x^2}{x^2 - 2x + 5} \Rightarrow x^2 (\alpha^2 - 1) - 2x\alpha^2 + 5\alpha^2 = 0$   
 $x \in \mathbb{R} \Rightarrow \mathbb{D} \ge 0$   
 $4\alpha^4 - 4(\alpha^2 - 1)5\alpha^2 \ge 0$   
 $\alpha^2 [4\alpha^2 - 2\alpha^2 + 20] \ge 0$   
 $\alpha^2 [4\alpha^2 - 2\alpha^2 + 20] \ge 0$   
 $\alpha^2 [\alpha^2 - \frac{5}{4}] \le 0$   
 $0 \le \alpha^2 \le \frac{5}{4}$   
 $\therefore \alpha^2 \in [0, \frac{5}{4}]$   
 $\therefore \alpha \in [-\frac{\sqrt{5}}{2}, \frac{\sqrt{5}}{2}]$   
then  $4[(q)^2 + (p)^2] = 4[\frac{5}{4} + \frac{5}{4}] = 10$ 

- **10.** Let M be any  $3 \times 3$  matrix with entries from the set  $\{0, 1, 2\}$ . The maximum number of such matrices, for which the sum of diagonal elements of  $M^TM$  is seven, is \_\_\_\_\_
- Ans. 540

Sol.  $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}$  $a^{2} + b^{2} + c^{2} + d^{2} + e^{2} + f^{2} + g^{2} + h^{2} + i^{2} = 7$ 

## Toll Free : 1800-212-1799

24<sup>th</sup> Feb. 2021 | Shift 1

Case I : Seven (1's) and two (0's)

 ${}^{9}C_{2} = 36$ 

Case II : One (2) and three (1's) and five (0's)

 $\frac{9!}{5!3!} = 504$ 

∴ Total = 540

## Toll Free : 1800-212-1799

# Motion

Another opportunity to strengthen your preparation

### UNNATI CRASH COURSE JEE Main May 2021 at Kota Classroom

- 40 Classes of each subjects
- Doubt Clearing sessions by Expert faculties
- Full Syllabus Tests to improve your question activities addition
- solving skills Thorough learning of concepts with regular classes
- Get tips & trick along with sample papers



Course Fee : ₹ 20,000

#### Start your **JEE Advanced 2021** Preparation with

## **UTTHAN** CRASH COURSE

### at Kota Classroom

- Complete course coverage
- 55 Classes of each subject
- 17 Full & 6 Part syllabus tests will strengthen your exam endurance
- Doubt clearing sessions under the guidance of expert faculties
- Get tips & trick along with sample papers

Course Fee : ₹ 20,000

